Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method
نویسنده
چکیده
Since the 1990s, state-dependent Riccati equation (SDRE) strategies have emerged as general design methods that provide a systematic and effectivemeans of designing nonlinear controllers, observers and filters. These methods overcome many of the difficulties and shortcomings of existing methodologies, and deliver computationally simple algorithms that have been highly effective in a variety of practical and meaningful applications in very diverse fields of study. These include missiles, aircraft, unmanned aerial vehicles, satellites and spacecraft, ships, autonomous underwater vehicles, automotive systems, biomedical systems, process control, and robotics, along with various benchmark problems, as well as nonlinear systems exhibiting several interesting phenomena such as parasitic effects of friction and backlash, unstable nonminimum-phase dynamics, time-delay, vibration and chaotic behavior. SDRE controllers, in particular, have become very popular within the control community, providing attractive stability, optimality, robustness and computational properties, making real-time implementation in feedback form feasible. However, despite a documented history of SDRE control in the literature, there is a significant lack of theoretical justification for logical choices of the design matrices, which have depended on intuitive rules of thumb and extensive simulation for evaluation and performance. In this paper, the capabilities and design flexibility of SDRE control are emphasized, addressing the issues on systematic selection of the design matrices and going into detail concerning the art of systematically carrying out an effective SDRE design for systems that both do and do not conform to the basic structure and conditions required by themethod. Several situations that prevent the direct application of the SDRE technique, such as the presence of control and state constraints, are addressed, demonstrating how these situations can be readily handled using the method. In order to provide a clear understanding of the proposed methods, systematic and effective design tools of SDRE control are illustrated on a singleinverted pendulum nonlinear benchmark problem and a practical application problem of optimally administering chemotherapy in cancer treatment. Lastly, real-time implementation aspects are discussed with relevance to practical applicability. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
State-Dependent Riccati Equation (SDRE) Control: A Survey
Since the mid-90’s, State-Dependent Riccati Equation (SDRE) strategies have emerged as general design methods that provide a systematic and effective means of designing nonlinear controllers, observers, and filters. These methods overcome many of the difficulties and shortcomings of existing methodologies, and deliver computationally simple algorithms that have been highly effective in a variet...
متن کاملNonlinear feedback controllers and compensators: a state-dependent Riccati equation approach
State-dependent Riccati equation (SDRE) techniques are rapidly emerging as general design and synthesis methods of nonlinear feedback controllers and estimators for a broad class of nonlinear regulator problems. In essence, the SDRE approach involves mimicking standard linear quadratic regulator (LQR) formulation for linear systems. In particular, the technique consists of using direct paramete...
متن کاملGlobal Stabilization of Attitude Dynamics: SDRE-based Control Laws
The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...
متن کاملIntegrated Fault-detection and Control of DC Microgrids Using SDRE Observer-controller
In this paper, using the state-dependent Riccati equation (SDRE) technique, a suboptimal fault-tolerant control scheme is designed for a DC microgrid in the islanded mode. The objectives are the voltages control of the photo-voltaic cell, the battery, the capacitor bank, and the DC bus as well as on time fault detection. In the design procedure of the SDRE observer-controller, a nonlinear mathe...
متن کاملMotion Control and Dynamic Load Carrying Capacity of Mobile Robot via Nonlinear Optimal Feedback
In this paper, two methods are presented for solving closed loop optimal control problem and finding dynamic load carrying capacity (DLCC) for fixed and mobile manipulators. These control laws are based on the numerical solution to nonlinear Hamilton-Jacobi-Bellman (HJB) equation. First approach is the Successive Approximation (SA) for finding solution of HJB equation in the closed loop form an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual Reviews in Control
دوره 34 شماره
صفحات -
تاریخ انتشار 2010